2-Arylperimidine derivatives. Part 1. Synthesis, NMR spectroscopy, X-ray crystal and molecular structures

Antonio L. Llamas-Saiz,^a Concepción Foces-Foces,^{*,a} Dionisia Sanz,^b Rosa M^a Claramunt,^{*,b} Julio Dotor, ^c José Elguero, ^d Javier Catalán^e and Juan Carlos del Valle^e

- ^a Departamento de Cristalografía, Instituto de Química-Física 'Rocasolano', CSIC, Serrano 119, E-28006 Madrid, Spain ^b Departamento de Química Orgánica y Biología, Facultad de Ciencias, UNED, Ciudad Universitaria, E-28040 Madrid, Spain
- Instituto de Bachillerato 'Hernán Pérez del Pulgar', E-13002 Ciudad Real, Spain
- ^d Instituto de Química Médica, CSIC, E-28006 Madrid, Spain
- ^e Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

The synthesis and NMR spectroscopy of seven 2-phenyl-, 2-(2-hydroxyphenyl)- and 2-(2-methoxyphenyl)perimidines 1-7 are described. The X-ray structural characterization of four perimidine derivatives: 2-(2-hydroxyphenyl)perimidine (2), 2-(9-anthryl)perimidine (4), 1-methyl-2-phenylperimidine (5) and 1-methyl-2-(2-methoxyphenyl)perimidine (7) is reported. The conformation of the molecules in the crystal has been compared with the results of a quantum chemical analysis at the AM1 level. The agreement between the predicted and the experimental conformations depends on the presence of strong intramolecular hydrogen bonds.

Following our research work in the field of the photophysics and photostability studies of new derivatives related to 9,9'-bianthryl and 2-(2-hydroxy-5-methylphenyl)benzotriazole or Tinuvin P^{1,2} we describe here the synthesis and molecular structures, both in solution and in the solid state, of seven derivatives of the perimidine system, namely 2-phenylperimidine (1), 2-(2-hydroxyphenyl)perimidine (2), 2-(2-methoxyphenyl)perimidine (3), 2-(9-anthryl)perimidine (4), 1-methyl-2-phenylperimidine (5), 1-methyl-2-(2-hydroxyphenyl)perimidine (6) and 1-methyl-2-(2-methoxyphenyl)perimidine (7). Their photophysical behaviour constitutes Part 2 of the work and will be published elsewhere.

Results and discussion

Chemistry

The synthetic procedure of Paragamian et al.^{3a} was used to prepare the title compounds 1-7. 1,8-Diaminonaphthalene and 1-amino-8-methylaminonaphthalene^{4a} were treated with the corresponding aldehydes in xylene and in the presence of palladium-charcoal (10%) to afford with quantitative yields the 2-arylperimidine derivatives as shown in Scheme 2.

Even though the compounds can also be prepared from the corresponding acyl chlorides,³ the work-up of such a process is tedious and gives poorer yields.

NMR spectroscopy

The ¹H and ¹³C chemical shifts of compounds 1-7 are given in Tables 1, 2 and 3. In solution, the analysis of the chemical shifts has been performed when necessary by means of homonuclear $(^{1}H-^{1}H)$ COSY and heteronuclear $(^{1}H-^{13}C)$ correlations.⁵ The NH-derivatives 1-4 presented blocked prototropy (Table 2) and to obtain the averaged spectra corresponding to rapid proton exchange, a catalytic amount of water or acid must be present in the NMR solution (Table 3). This behaviour clearly differentiates perimidines and benzimidazoles regarding annular tautomerism: in the former compounds the proton exchange rate is much lower than in the latter compounds, a result which is related to the difference in aromaticity and in the acid-basic character of the NH and N centres.

Concerning the aryl group in derivatives 1-3 and 5-7, the influence of hydroxy and methoxy substituents ^{6.7} had been

Table 1	H NMR p	arameters (c	and J) o	of 2-arylperi	imidines at	200 MHz										
Compd.	H4	H,	H	H ₇	H ₈	H,	$H_{2'}$	H _{3′}	H4'	H ₅ ′	H _{6'}	HN	НО	N-CH ₃	0-CH ₃	Solvent
1	6.70 6.69 $J_{4.5} = J_{4.5}$	7.17 7.19 $7_{.8} = 7.0; J$	7.06 7.11 $_{5.6} = J_{8}$,	7.05 7.11 9 = 8.3	7.14 7.19	6.54 6.69	8.07	7.51 6.92 $J_{3',4'} = 8$	7.53 7.40 8.3; J _{4'.5'} =	7.51 6.94 = 7.4; J _{5'.6'}	8.07 7.97 = 8.3	10.64 10.8	14.7			[² H ₆]DMSO [² H ₆]DMSO
e	$J_{4.6} =$ 6.57 $J_{4.5} =$	$V_{7.9} = 1.3$ 7.14	7.03	6.95	7.07	6.34 $J_{8.9} = 7$.	<u> </u>	$J_{4',6'} = J_{4',6'} = J_{3',4'} = 0$	1.6; J _{3'.5'} = 7.48 8.8; J _{4'.5'} =	= 1.2 7.03 = 7.5; J _{5'.6} .	7.59 = 7.5	10.47			3.86	OSMG[³ H ²]
3ª	$J_{4.6} = (6.85)$ $J_{4.5} = 7$).9 7.23 1.2; J _{5.6} = {	7.02 }.3	7.03 $J_{7.8} = 9$	7.08 9.5; J _{8.9} =	$J_{7.9} = 1.$ 6.20 6.9	_	$J_{4'.6'}^{4'.6'} = J_{3'.4'}^{4'.6'} = J_{3'.4'}^{4'.6'} = J_{3'.4'}^{4'} = J_{3'.4'}^{4'} = J_{3'.4'}^{4'} = J_{3'.4'}^{4'} = J_{3'.4'}^{4'}$	1.8 7.46 8.4; J _{4'.5' =}	7.12 = 7.3; J _{5'.6'}	8.35 = 7.9	9.28			4.01	CDCl ₃
4	6.64 $J_{4.5} = ($	→ 6;	7.	.06-7.26 —		$\rightarrow 6.30$ J _{8.9} = 6.	0	$J_{3'.5'} = b$	1.0; J _{4'.6'} =	= 1.9		11.14				OSMd[₈ H ²]
4 v	$J_{4.6} = 0.58$ 6.72 $J_{4.5} = 0.02$	4.1 → 6.3	7.	.21-7.26 — .15-7.30 —		$J_{7.9} = 2.$ $\rightarrow 6.58$ $\rightarrow 6.41$ $J_{8.9} = 7.$	2 3	v	- 7.49–7.6	51 —	Î	n.o.		3.05		CDCI ₃ [² H ₆]DMSO
9	$J_{4.6} = 0.68$ $J_{4.5} = 0.68$	$\begin{array}{l} 1.5\\ 7.25\\ 7.0; J_{5.6} = 1 \end{array}$	7.16 3.3	$J_{7.8} = \frac{8}{2}$	7.23 3.2; J _{8.9} =	$J_{7.9} = 1.$ 6.36 7.2	5	6.95 J _{3'.4'} =	7.32 7.4; J _{4'.5' =}	6.92 = 7.2; J _{5^{,6'}}	7.31 = 7.4		10.06	2.99		OSMG[³ H ²]
6	$J_{4.6} = 0.85$ $J_{4.5} = 0.00$	5.8	7.	$J_{7.9} = 1$	[]	$\rightarrow 6.35$ $J_{8.9} = 6.$	ε,	$J_{4,6}^{4,6} = J_{3,4}^{6,6} = J_{3,4}^{6,6}$	1.5 7.31 8.3; J _{4'.5' =}	= 7.3; J _{5'.6}	7.40 = 7.8		n.o.	3.36		cDCl ₃
٢	$J_{4.6} = J_{4.5} = J_{4.5} = J_{4.6} = J_{4$	1.6 7.25 7.0; J _{5.6} = 1 1.5	7.17 3.3	7.15 $J_{7.8} = {}_{7.9} = {}_{1}$	7.23 8.4; J _{8.9} = 1.3	J _{7.9} = 2. 6.35 7.1	_	$J_{3,5'}^{3,5'} = J_{3',4'}^{3,5'} = J_{3',5'}^{3,5'} = 0$	1.2; J _{4'.6'} = 7.49 8.4; J _{4'.5'} = 0.9; J _{4'.6'} =	= 1.7 7.08 = 7.4; J _{s^{.6'}}	7.38 , = 7.4			2.92	3.83	OSMd[³ H ₅]
" At 600 N	4Hz. ^b 8.78:	(H ₁₀ .); 8.1	1 -8.24: (F	H _{1'} , H _{8'} , H ₄	, H ₅ .); 7.5	3–7.66: (H _{2'}	, Н ₇ .,Н ₃ .,	H _{6'}). ^c 8.53	ł: (H ₁₀ .); 8.	30-8.34: (F	H ₁ ', H _{8'}); 8.(00-8.05: (F	H4', H5'); 7.	.50-7.57: (H ₂ ',	, H ₇ ., H ₃ ., H ₆ .).	

2, H₅.);

1390

Table 2	IMN DE1	R paramet	ers (ð and	J) of 2-ary	ylperimidir	Jes													
Compd.	c,	C _{3a}	C4	C,	c,	C _{6a}	c,	ڻ ت	ບໍ	C,ª	C,,	c ₁ ,	C ₂ ,	C ₃ ,	C4,	c,	C ₆ ,	N-CH ₃	0-CH ₃
1 a	152.7	145.1	114.0	128.9	119.3	135.1	117.8	128.0	102.8	138.6	121.7	133.5	126.8	128.4	131.0	128.4	126.8		
1,	156.5	144.9	113.2	127.6	120.0	133.8	120.0	127.6	102.6	138.7	122.4	133.8	127.6	127.6	131.3	127.6	127.6		
2,	153.6	140.3	111.1	129.2	120.1	135.5	120.1	129.2	103.1	140.3	123.5	111.1	160.8	116.7	135.5	118.0	129.2		
3	152.8	145.4	113.4	128.8	118.8	135.0	117.3	127.9	102.0	138.2	121.5	123.6	156.7	111.6	131.4	120.3	129.7		55.6
ŝ	150.8	144.9	113.1	129.1	117.1	136.6	117.1	129.1	102.8	136.6	120.3	121.2	158.0	109.2	132.0	118.5	129.1		58.6
4	123.4	145.4	113.9 17160.3	129.0 17156.4	119.6 ¹ J 162.0	5.651	118.0 1.7 158.0	128.0 11158.7	102.3 1/160.0	138.7	6.121	c							
5ª	156.7	143.3	114.3	128.7	119.5	135.8	118.6	128.0	102.0	140.2	121.7	134.6	128.1	128.5	129.6	128.5	128.1	36.8	
		³J 8.4	1,161.1	¹ <i>J</i> 158.2	¹ J 157.2		¹ <i>J</i> 161.7	¹ <i>J</i> 159.4	¹ J 162.8		3J5.6 3156		¹ J 158.2	¹ <i>J</i> 161.8	1 161.3	¹ <i>J</i> 161.8	¹ J 158.2	¹ J 140.0	
S ⁴	156.7	144.4	115.2	127.5	117.8	137.0	117.8	127.5	103.2	139.9	122.5	134.4	129.2	129.2	129.2	129.2	129.2	35.4	
•9	154.6*	142.0	113.3	128.7	119.7	134.6	119.1	128.1	102.3	139.2	121.5	122.1	155.7*	115.8	131.3	119.3	129.7	35.1	
			¹ J160.2 ³ J8.2	¹ J 158.6	¹ <i>J</i> 161.4		1 J 164.5	¹ J 159.7	¹ J 161.7					¹ J 161.5 ³ J 7 6	¹ J 163.2 ³ J 9 3	1J 164.5	¹ J 161.6 ³ J 8 8	1 1 1 40.5	
6 ^b	155.5	142.7	110.8	129.5	121.3	137.1	118.7	129.5	102.4	142.7	121.3	127.5	155.5	116.0	135.7	116.0	129.5	33.2	
9	156.9	140.6*	114.2	128.7	120.7	134.7	119.9	128.6	103.1	140.5*	121.7	126.0	158.2	118.7	132.0	118.7	127.4	39.0	
74	154.8	143.5	114.2	128.7	119.4	134.7	118.5	128.0	101.3	139.7	121.7	124.8	156.0	111.2	131.1	120.8	129.5	34.6	55.6
			¹ J 160.3	¹ J157.8	¹ J 162.3		¹ J160.5	¹ J 159.4	¹ J 160.5					¹ J 162.6	¹ J 162.8	¹ J160.3	¹ J 162.2	¹ J139.9	¹ J 145.2
٩L	154.0	143.7	115.7	128.2	120.1	134.5	117.2	128.2	100.0	139.6	122.6	125.4	156.2	108.7	130.7	120.1	130.7	34.2	55.1
^a In [² H ₆ . 128.5 (C ₈]DMSO. ¹ ;(a/C ₉ .a). ⁴]	CP-MAS	. ^c 125.1, ¹	J 160.2 (C	(1./C ₈ .); 12	5.7, ¹ J 16	1.3, ³ J 8.5	(C ₂ /C ₇ ,);	127.0, ¹ <i>J</i> 1	61.5, ³ J8	3.5 (C ₃ /C ₆	.); 128.6, ¹	J 160.5 (C,	_v /C ₅ .); 129	9.4 (C ₉ .);]	128.2, ¹ J 10	62.0 (C ₁₀ .)	; 130.8 (C	4'a/C _{10'a});
Table 3	¹³ C NMR	t paramete	ers (ð and .	J) of 2-ary	lperimidin	ies (rapid	prototrop	y)											
Compd.	c,	U.	_{3a} /C _{9a}	C4/C9	C _s /C ₈	C _	₆ /C,	C _{6a}	C _{9b}	ני 	<u> </u>	C2'	C3,	Ů		C,	C,	9	CH 3
1ª	153.0 373.6 373.6	1	1 1.7	108.5 ¹ J 159.6	128.5 1J 158	3.5 ¹	18.7 1 163.2	135.2	121.7 ³ 76.2 376.7	13 J	13.5 15.6	127.0 1 <i>J</i> 158.6	128.5 1 <i>J</i> 159	.5 ¹³	1.2 161.6	128.5 1 <i>J</i> 159.5	127.0 1 J 158	.6	
2ª	154.7	<u> </u>	39.0vbr	107.9vbr 1 <i>J b</i>	128.4 1J158	.1 .1.	19.3br 1 b	134.8	121.1	11	2.8	161.3	117.9 111101 111101	$\frac{13}{1}$	3.2 158.9 7.5	118.0 1 J 161.9	126.2 ¹ 7158	5	
3ª	153.3 ³ J 3.6	14	11.8	107.7 1 J b	128.7 1 J 158	1 1	18.5 1 163.6	135.4 ³ J 8.5	121.8	12 3 <i>J</i>	13.7 6.7	157.1 ³ J 8.6	111.9 111.9 11162	راعاً	/.0 1.8 160.3	120.6 120.6 17162.3	130.0 130.0 17161	.0 55.	9 145.2
								³J 8.5		ſ	6.7	³ J8.6 ³ J(OMe)	³ <i>J</i> 8.0 4.3	2J.	2.6	³ <i>J</i> 8.0	³ J 8.5 ² J 2.1		
ų A	151.8	b 14	0.7	b 108.9	128.4t 128.3	br 1	19.0br 20.1	135.5 135.4	120.8	۲ 12	2.2	157.5	111.6	132	2.3	121.7	131.0	56.	1
				^{1}Jb	¹ J 159	.1 0.0	1156.0		¹ J 156	3									

Fig. 1 Molecular structure¹¹ of compounds 2, 4, 5 and 7. Thermal ellipsoids scaled to 30% probability and the H atoms are denoted by spheres of 0.1 Å in radius. Dotted lines indicate hydrogen bonds.

used for the assignment of the protons and carbons, together with the multiplicity of the signals and the coupling constant values. The planarity criteria discussed in refs. 2 and 8 have also been applied to our derivatives with the following conclusions: in compounds 2 and 3 the aryl groups and the perimidine rings are nearly coplanar due to hydrogen bonding, in the first derivative, between the phenolic OH group and the pyridinic nitrogen at the 3-position (δ_{OH} appears at 14.7 ppm), and in the second one, between the methoxy and the NH as indicated previously in ref. 9.

The signals of the anthryl substituent were assigned on the

basis of our previous work where the chemical shift values of the 9,9'-bianthryl are discussed.¹

NMR data for the perimidine system had been scarcely reported in the literature;^{9.10} in ¹H NMR spectroscopy of the 2-arylperimidines 1–7, the most striking feature is the chemical shift difference between the pairs of signals $\Delta \delta = \delta_{H_4} - \delta_{H_9}$ of *ca*. 0.28 ppm in [²H₆]DMSO and 0.57 in CDCl₃ (Table 1), the remaining ones, H₅/H₈ and H₆/H₇, having closer values.

Similarly, in the ¹³C NMR spectra, δ_{C_4} is larger than δ_{C_9} by *ca*. 11.7 ppm and C_{3a} appears downfield by *ca*. 5.0 ppm with respect to C_{9a} (Table 2). When comparing the reported ¹³C

Table 4 Selected experimental bond distances and angles and semiempirical averaged values for compounds 2, 4, 5 and 7 and perimidine (Å, °). For compounds 2: R1 = H, X1 = O(20), X2 = H; 4: R1 = H, X1 = C(16), X3 = C(27); 5: R1 = C(20), X1 = X3 = H and 7: R1 = C(20), X1 = O(21), X2 = C(22), see Fig. 1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	4	5	7	AM1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 N(1)-C(2)	1.361(4)	1.352(2)	1.375(2)	1.377(2)	1.404, ^a 1.411, ^b 1.393 ^c
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(1)-C(12)	1.399(3)	1.398(2)	1.407(3)	1.400(2)	1.399, ^a 1.409, ^b 1.400 ^c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-R1	0.93(4)	0.92(3)	1.458(3)	1.459(2)	0.992,ª 1.436, ^b 0.990°
$\begin{array}{cccccc} \hline C(2)-C(14) & 1.46a(3) & 1.493(2) & 1.493(3) & 1.493(2) & 1.488,^4 1.493,^e 1.111^e \\ N(3)-C(4) & 1.396(3) & 1.408(2) & 1.403(3) & 1.396(2) & 1.407 \\ C(4)-C(5) & 1.373(5) & 1.378(3) & 1.380(3) & 1.383(2) & 1.393 \\ C(4)-C(13) & 1.411(4) & 1.416(2) & 1.414(3) & 1.415(2) & 1.439 \\ C(5)-C(6) & 1.413(4) & 1.404(3) & 1.400(3) & 1.402(2) & 1.408 \\ C(6)-C(7) & 1.361(5) & 1.358(4) & 1.373(3) & 1.363(3) & 1.377 \\ C(7)-C(8) & 1.404(6) & 1.416(3) & 1.413(3) & 1.411(3) & 1.419 \\ C(8)-C(9) & 1.409(5) & 1.412(3) & 1.413(3) & 1.411(3) & 1.419 \\ C(8)-C(13) & 1.420(2) & 1.422(3) & 1.412(3) & 1.412(3) & 1.422 \\ C(9)-C(10) & 1.363(6) & 1.355(3) & 1.360(3) & 1.353(3) & 1.373 \\ C(10)-C(11) & 1.405(4) & 1.408(3) & 1.405(3) & 1.404(3) & 1.411 \\ C(11)-C(12) & 1.371(4) & 1.374(3) & 1.380(3) & 1.382(3) & 1.392 \\ C(12)-C(13) & 1.419(5) & 1.412(2) & 1.413(3) & 1.416(2) & 1.442 \\ C(14)-C(15) & 1.417(4) & 1.402(3) & 1.379(3) & 1.402(2) & - \\ C(14)-C(19)/C(27) & 1.402(5) & 1.406(3) & 1.384(3) & 1.384(2) & - \\ C(19)-X1 & 1.352(4) & 1.416(3) & - & 1.354(2) & - \\ C(19)-X3 & - & 1.426(3) & - & - & - \\ C(12)-N(1)-R1 & 120(2) & 119(1) & 117.7(2) & 117.5(1) & 120.0,^e 118.7,^b 119.8^e \\ C(2)-N(1)-R1 & 118(2) & 119(1) & 117.7(2) & 117.5(1) & 120.0,^e 118.7,^b 119.8^e \\ C(2)-N(1)-R1 & 118(2) & 119(1) & 122.5(2) & 122.3(1) & 120.3,^e 122.6,^b 118.9^e \\ N(1)-C(2)-N(3) & 122.0(2) & 124.4(2) & 125.1(2) & 124.5(1) & 125.1,^7 126.6^e \\ C(2)-N(3)-C(4) & 120.2(2) & 117.5(1) & 118.3(1) & 118.3 \\ N(3)-C(4)-C(5) & 120.8(2) & 120.0(1) & 17.5(2) & 119.8(1) & 121.1 \\ N(1)-C(12)-C(11) & 122.8(3) & 123.0(2) & 122.6(2) & 123.3(2) & 122.9 \\ N(1)-C(12)-C(13) & 116.4(2) & 116.0(2) & 117.0(2) & 116.9(1) & 117.5^e 118.1,^b 117.3^e \\ C(2)-N(3)-C(4) & 120.2(2) & 117.5(1) & 118.3(2) & 118.5(1) & 118.3 \\ N(3)-C(4)-C(5) & 120.8(2) & 120.0(1) & 127.5^e 118.9(1) & 117.5^e \\ N(1)-C(12)-C(11) & 122.8(3) & 123.0(2) & 122.6(2) & 123.3(2) & 122.9 \\ N(1)-C(12)-C(13) & 116.4(2) & 116.0(2) & 117.0(2) & 116.9(1) & 117.5^e 118.1,^b 117.3^e \\ C(4)-C(5) & C(4) & 116.0(2) & 117.0$	C(2) - N(3)	1.312(4)	1.301(2)	1.293(2)	1.297(2)	1.309
$\begin{split} & N(3)-C(4) & 1.396(3) & 1.408(2) & 1.403(3) & 1.396(2) & 1.407 \\ & C(4)-C(5) & 1.373(5) & 1.378(3) & 1.380(3) & 1.383(2) & 1.393 \\ & C(4)-C(13) & 1.411(4) & 1.416(2) & 1.414(3) & 1.415(2) & 1.439 \\ & C(5)-C(6) & 1.413(4) & 1.404(3) & 1.400(3) & 1.402(2) & 1.408 \\ & C(6)-C(7) & 1.361(5) & 1.358(4) & 1.373(3) & 1.363(3) & 1.377 \\ & C(7)-C(8) & 1.404(6) & 1.416(3) & 1.413(3) & 1.411(3) & 1.419 \\ & C(8)-C(9) & 1.409(5) & 1.412(3) & 1.414(3) & 1.412(3) & 1.422 \\ & C(8)-C(13) & 1.420(3) & 1.420(2) & 1.423(3) & 1.419(2) & 1.412 \\ & C(9)-C(10) & 1.365(6) & 1.355(3) & 1.350(3) & 1.353(3) & 1.373 \\ & C(10)-C(11) & 1.405(4) & 1.408(3) & 1.405(3) & 1.404(3) & 1.411 \\ & C(11)-C(12) & 1.371(4) & 1.374(3) & 1.380(3) & 1.382(3) & 1.392 \\ & C(12)-C(13) & 1.417(4) & 1.402(3) & 1.379(3) & 1.402(2) & - \\ & C(14)-C(19)/C(27) & 1.402(5) & 1.406(3) & 1.3384(3) & 1.384(2) & - \\ & C(14)-C(19)/C(27) & 1.402(5) & 1.406(3) & 1.3384(3) & 1.384(2) & - \\ & C(19-X3) & - & 1.426(3) & - & - \\ & C(19-X3) & - & 1.426(3) & - & - \\ & C(19-X3) & - & 1.426(3) & - & - \\ & C(19-X3 & - & 1.426(3) & - & - \\ & C(2)-N(1)-R1 & 120(2) & 119(1) & 117.7(2) & 117.5(1) & 120.0,^e 118.7,^b 119.8^e \\ & C(2)-N(1)-R1 & 120(2) & 119(1) & 112.5(2) & 122.3(1) & 120.3,^e 112.3,^e 12.3,^e 12.3$	C(2) - C(14)	1.464(3)	1.493(2)	1.493(3)	1.493(2)	1.488, ⁴ 1.493, ^e 1.111 ^c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(3)-C(4)	1.396(3)	1.408(2)	1.403(3)	1.396(2)	1.407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - C(5)	1.373(5)	1.378(3)	1.380(3)	1.383(2)	1.393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - C(13)	1.411(4)	1.416(2)	1.414(3)	1.415(2)	1.439
$\begin{array}{cccccc} C(6)-C(7) & 1.361(5) & 1.358(4) & 1.373(3) & 1.363(3) & 1.377 \\ C(7)-C(8) & 1.404(6) & 1.416(3) & 1.413(3) & 1.411(3) & 1.419 \\ C(8)-C(9) & 1.409(5) & 1.412(3) & 1.413(3) & 1.412(3) & 1.422 \\ C(8)-C(13) & 1.420(3) & 1.420(2) & 1.423(3) & 1.419(2) & 1.412 \\ C(9)-C(10) & 1.363(6) & 1.355(3) & 1.360(3) & 1.353(3) & 1.373 \\ C(10)-C(11) & 1.405(4) & 1.408(3) & 1.405(3) & 1.404(3) & 1.411 \\ C(11)-C(12) & 1.371(4) & 1.374(3) & 1.380(3) & 1.382(3) & 1.392 \\ C(12)-C(13) & 1.419(5) & 1.412(2) & 1.413(3) & 1.416(2) & 1.442 \\ C(14)-C(15) & 1.417(4) & 1.402(3) & 1.379(3) & 1.402(2) & \\ C(14)-C(19)/C(27) & 1.402(5) & 1.406(3) & 1.384(3) & 1.384(2) & \\ C(15)-X1 & 1.352(4) & 1.416(3) & & 1.354(2) & \\ C(19)-X3 & & 1.426(3) & & \\ C(12)-N(1)-R1 & 120(2) & 119(1) & 117.7(2) & 117.5(1) & 120.9^a 118.7,^b 119.8^c \\ C(2)-N(1)-R1 & 118(2) & 119(1) & 122.5(2) & 122.3(1) & 120.3^a 122.6,^b 121.3^c \\ C(2)-N(1)-C(12) & 122.2(2) & 121.9(1) & 119.6(2) & 120.2(1) & 119.7,^a 118.5,^b 118.9^c \\ N(1)-C(2)-N(3) & 122.0(2) & 124.4(2) & 125.1(2) & 124.5(1) & 118.5,^b 118.9^c \\ N(1)-C(2)-N(3) & 122.0(2) & 124.4(2) & 125.1(2) & 124.5(1) & 118.5,^b 118.9^c \\ N(1)-C(12)-C(13) & 119.7(3) & 120.8(1) & 120.2(2) & 119.8(1) & 125.1,^f 126.6^c \\ C(2)-N(3)-C(4) & 120.2(2) & 117.5(1) & 118.3(2) & 118.5(1) & 118.3 \\ N(3)-C(4)-C(5) & 120.8(2) & 120.1(2) & 119.9(2) & 119.8(1) & 121.1 \\ N(1)-C(12)-C(11) & 122.8(3) & 123.0(2) & 122.6(2) & 123.3(2) & 122.9 \\ N(1)-C(12)-C(13) & 116.4(2) & 116.0(2) & 117.0(2) & 116.9(1) & 117.5,^a 118.1,^b 117.3^c \\ C(4)-C(3)-C(4) & 119.7(2) & 119.9(2) & 119.9(1) & 117.5,^a 118.1,^b 117.3^c \\ C(4)-C(3)-C(4) & 119.7(2) & 119.9(2) & 119.4(1) & 119.5 \\ N(1)-C(12)-C(12) & 119.5(2) & 119.4(2) & 115.9(1) & 115.1^a 117.8^b 115.4^c \\ C(2)-C(3)-C(4) & 119.7(2) & 115.9(1) & 115.9(1) & 115.1^a 117.8^b 115.4^c \\ C(2)-C(3)-C(4) & 119.7(2) & 119.9(2) & 119.9(1) & 115.4^c \\ C(2)-C(3)-C(4) & 119.7(2) & 115.9(1) & 115.9(1) & 115.1^a 117.8^b 115.4^c \\ C(2)-C(3)-C(4) & 119.7(2) & 115.9(1) & 115.9(1) & 115.1^a 117.8^b 11$	C(5)-C(6)	1.413(4)	1.404(3)	1.400(3)	1.402(2)	1.408
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) - C(7)	1.361(5)	1.358(4)	1.373(3)	1.363(3)	1.377
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7) - C(8)	1.404(6)	1.416(3)	1.413(3)	1.411(3)	1.419
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)-C(9)	1.409(5)	1.412(3)	1.414(3)	1.412(3)	1.422
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8) - C(13)	1.420(3)	1.420(2)	1.423(3)	1.419(2)	1.412
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9) - C(10)	1.363(6)	1.355(3)	1.360(3)	1.353(3)	1.373
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) - C(11)	1.405(4)	1.408(3)	1.405(3)	1.404(3)	1.411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) - C(12)	1.371(4)	1.374(3)	1.380(3)	1.382(3)	1.392
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - C(13)	1.419(5)	1.412(2)	1.413(3)	1.416(2)	1.442
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - C(15)	1.417(4)	1.402(3)	1.379(3)	1.402(2)	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - C(19) / C(27)	1.402(5)	1.406(3)	1.384(3)	1.384(2)	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)-X1	1.352(4)	1.416(3)		1.354(2)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1-X2	1.05(4)	_		1.432(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)–X3	_	1.426(3)	_	—	—
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-N(1)-R1	120(2)	119(1)	117.7(2)	117.5(1)	120.0, ^a 118.7, ^b 119.8 ^c
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) - N(1) - R1	118(2)	119(1)	122.5(2)	122.3(1)	120.3, ^a 122.6, ^b 121.3 ^c
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(2)-N(1)-C(12)	122.2(2)	121.9(1)	119.6(2)	120.2(1)	119.7," 118.5," 118.9°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(2)-N(3)	122.0(2)	124.4(2)	125.1(2)	124.5(1)	125.1, ^f 126.6 ^c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)-N(3)-C(4)	120.2(2)	117.5(1)	118.3(2)	118.5(1)	118.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(3)-C(4)-C(13)	119.7(3)	120.8(1)	120.2(2)	120.5(1)	120.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(3)-C(4)-C(5)	120.8(2)	120.1(2)	119.9(2)	119.8(1)	121.1
N(1)-C(12)-C(13)116.4(2)116.0(2)117.0(2)116.9(1)117.5, a 118.1, b 117.3 °C(4)-C(13)-C(12)119.5(2)119.4(2)119.7(2)119.4(1)119.5N(1)-C(2)-C(14)110.7(2)115.8(1)118.3 (2)119.5(1)115.1 a 117.8 b 115.4 °	N(1)-C(12)-C(11)	122.8(3)	123.0(2)	122.6(2)	123.3(2)	122.9
$\begin{array}{cccc} C(4)-C(12) & 119.5(2) & 119.4(2) & 119.7(2) & 119.4(1) & 119.5 \\ N(1)-C(2)-C(14) & & 119.7(2) & 115.8(1) & & 118.3(2) & & 119.5(1) & & 115.1\pm117.8\pm115.45 \\ \end{array}$	N(1)-C(12)-C(13)	116.4(2)	116.0(2)	117.0(2)	116.9(1)	117.5,ª 118.1, ^b 117.3 ^c
$N(1) C(2) C(14) = 110.7(2) = 115.9(1) = 119.2(2) = 110.5(1) = 115.1.4.117.9.9.115.4^{\circ}$	C(4)-C(13)-C(12)	119.5(2)	119.4(2)	119.7(2)	119.4(1)	119.5
N(1) - C(2) - C(14) 119.7(2) 113.0(1) 116.3(2) 119.3(1) 113.1, 117.6, 113.4	N(1)-C(2)-C(14)	119.7(2)	115.8(1)	118.3(2)	119.5(1)	115.1, ^a 117.8, ^b 115.4 ^c
N(3)-C(2)-C(14) 118.2(2) 119.7(1) 116.6(2) 116.0(1) 120.0, ^a 117.0, ^b 118.0 ^c	N(3)-C(2)-C(14)	118.2(2)	119.7(1)	116.6(2)	116.0(1)	120.0, ^a 117.0, ^b 118.0 ^c
C(2)-C(14)-C(19) 122.2(2) 117.7(2) 121.1(2) 119.2(1) 119.7	C(2)-C(14)-C(19)	122.2(2)	117.7(2)	121.1(2)	119.2(1)	119.7
C(2)-C(14)-C(15) 120.1(3) 121.1(2) 119.9(2) 121.7(1) 120.3	C(2)-C(14)-C(15)	120.1(3)	121.1(2)	119.9(2)	121.7(1)	120.3
C(15)-C(14)-C(19) 117.7(2) 121.1(2) 118.9(2) 119.0(2) 119.5	C(15)-C(14)-C(19)	117.7(2)	121.1(2)	118.9(2)	119.0(2)	119.5
C(14)–C(15)–X1 122.2(2) 123.1(2) – 116.0(2) –	C(14)-C(15)-X1	122.2(2)	123.1(2)	—	116.0(2)	
C(16)–C(15)–X1 118.0(3) 117.7(2) – 124.2(2) –	C(16)-C(15)-X1	118.0(3)	117.7(2)		124.2(2)	
C(15)-X1-X2 103(3) 118.7(2) -	C(15)–X1–X2	103(3)	—	—	118.7(2)	_

^a Mean value of 2 and 4. ^b Same for 5 and 7. ^c Perimidine. ^d 2. ^e 4, 5. ^f 2, 4, 5 and 7.

chemical shift values of 1-methylperimidine¹⁰ with those obtained for 1-methyl-2-phenylperimidine (5) it appears that the introduction of an aryl group in the 2-position of the perimidine ring does not significantly affect the chemical shifts of the carbon signals, except for C₂ ($\Delta \delta = 8.5$ ppm).

The solid-state ¹³C CP/MAS-NMR data are reported in Table 2 and are consistent with the X-ray crystal structure results for compounds 2, 3, 95 and 7.

X-Ray crystallography

A view of the molecular structures with the crystallographic numbering scheme is shown in Fig. 1 (note that this numbering is different from that of Scheme 1). The molecular geometries and the main hydrogen interactions are given in Tables 4 and 5. The results of the least-squares plane calculations 12 show that the perimidine and the aryl rings are not planar in terms of the achieved precision. The conformational parameters 13 together with those of deformation 14 around the central bond of the naphthalene moiety are listed in Table 5.

In compound 7, each six-membered ring of the anthryl group exhibits significant deviations from planarity and the outer rings make angles of 2.5(1) and $1.6(1)^\circ$ with the central one.

The ortho substitution of the H by an OH in 2-(2hydroxyphenyl)perimidine (2) seems to affect significantly the conformation of the molecule because of the strong OH \cdots N intramolecular hydrogen bond (IMHB) (Table 5). The perimidine moiety and the phenyl rings are almost coplanar, with a dihedral angle of 3.5(2)° while for derivatives 4, 5 and 7 they tend to be perpendicular showing angles in the range $64.7(2)-77.8(2)^\circ$.

The pattern of bond distances and angles in the perimidine moiety is quite similar in all derivatives. However, the following differences are observed: in 2, the C(2)-C(14) distance is significantly shorter than in 2-(9-anthryl)perimidine (4), 1-methyl-2-phenylperimidine (5) or 1-methyl-2-(2-methoxyphenyl)perimidine (7), probably due to a certain degree of electron delocalization between the aryl and the heterocyclic ring. To a lesser extent, in 2 and 4, where there is an N-H involved in hydrogen interactions, the N(1)-C(2) and C(2)-N(3) bonds appear to be shortened and lengthened, respectively, with a greater degree of charge delocalization than in 5 and 7. The N(1)-C(2)-N(3) and C(2)-N(3)-C(4) angles in 2 [122.0(2) and 120.2(2)°] also reflect the influence of the hydrogen bonding. This conclusion is supported by theoretical calculations (Table 5), where the computed angles at C(2) and N(3) have mean values of 125.1 and 118.3°, in agreement with the corresponding experimental ones for 4, 5 and 7. Moreover, the substitution of the N-H by an N-Me in the perimidine ring

(b)

Fig. 2 Projections of the unit cell¹¹ down the c and b axis [(a) and (b)] for compound 2 showing the alternating hydrophobic and hydrophylic layers in the crystal

affects both the experimental and theoretical endocyclic angles at N(1) and C(12).

The packing of the molecules is illustrated in Figs. 2-4. Intermolecular hydrogen bonds between the N-H and the hydroxy group link molecules in 2, to form chains along the c axis. There are no bonding interactions between them.

In compound 4, $N-H \cdots N$ hydrogen bonds connect molecules in a helix system around the fourfold screw axis parallel to c. The remaining packing interactions are hydrophobic.

AM1 semiempirical calculations

A semiempirical analysis using the AM1 Hamiltonian¹⁵ was performed in order to study the lack of planarity of the perimidine system and the influence of the conformation on the molecular stability. The crystallographic data were used as the starting point for the full geometric optimization. The perimidine molecule was also calculated since, up to now, no suitable crystals for the X-ray analysis could be obtained. As far as the bond distances and angles are concerned, just a few

Fig. 3 Perspective views¹¹ of the hydrogen bonded helix down the c and b axis [(a) and (b)] for compound **4**. Each conformational enantiomer packs along the 4_1 and 4_3 screw-axis, respectively.

differences are observed. For these the values are given in Tables 4 and 5, otherwise, only the averaged ones are reported.

When the perimidine moiety is compared with that of the perimidine itself, the increases in the angle at C(2) and the shortening of the N(1)–C(2) and C(2)–N(3) bonds are the most remarkable features. Moreover, in 5 and 7, the angles at N(1) and C(12) reflect the influence of the methyl group at N(1), in a similar way to that proposed by Domenicano and Murray-Rust¹⁶ for the benzene rings. In contrast to the X-ray results, the perimidine is planar except in 7, probably induced by the steric crowding. The heterocyclic ring is puckered adopting a distorted envelope conformation tending towards a boat, according to the Cremer and Pople parameters ¹³ and similar to the experimental ones ($q_2 = 0.034, q_3 = 0.016$ Å, $\varphi_2 = -2$ and $\theta_2 = 64^\circ$).

Fig. 4 Crystal packing ¹¹ of compounds 5 and 7 as projected along the c and a axis [(a) and (b)] respectively

The conformational analysis was performed rotating the substituent at the 2-position of the perimidine moiety through 180° around the C(2)-C(14) bond and keeping the optimized geometrical parameters fixed except those close to the C(2)-C(14) bond and those involved in the substituent at the ortho position. All the *free* molecules present a coplanar orientation of the substituent and the perimidine ring (Fig. 5).

For the 2-(2-hydroxyphenyl)perimidine (2), besides the shortening of the C(2)-C(14) bond in agreement with the experimental results, the minimum energy conformation has the phenyl ring at 54.5° out of the plane of the perimidine ring. About 3 kcal mol^{-1} † are required to bring this angle to the experimental value of 3.5°. Thus, in the solid state, the conformation of 2 depends on the presence of the strong O-H...N intramolecular hydrogen bond. In the dimethyl derivative 7, the phenyl ring is twisted to overcome the nitrogenoxygen lone pair repulsion, placing the methoxy substituent on the same side of the N(1), as in the structure of the 2-(2methoxyphenyl)perimidine (3) previously reported,⁹ where the methoxy group is involved in an intramolecular hydrogen bond. The computed energy profiles show flat minima for 4, 5 and 7 (Fig. 5) and conformational changes in the ranges 72-108°. 45-135° and 55-110° require less than 0.5 kcal mol⁻¹, respectively. Note that the experimental values for these compounds are within these ranges, while the greatest disagreements are presented by molecules with IMHBs: 2-(2-hydroxyphenyl)perimidine (2), and 2-(2-methoxyphenyl)perimidine (3).⁹ The lack of planarity of the perimidine ring in 2, 4 and 5 is probably a consequence of the packing forces.

Experimental

Melting points were determined on a Büchi 530 apparatus and are uncorrected. ¹H (200.13 MHz) and ¹³C (50.32 MHz) NMR spectra were recorded on a Bruker AC-200 using CDCl₃ or [²H₆]DMSO; all chemical shifts (δ) are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) using CDCl₃ ($\delta_{\rm H} = 7.26$, $\delta_{\rm C} = 77.0$) and [²H₆]DMSO ($\delta_{\rm H} = 2.49$, $\delta_{\rm C} = 39.5$) as internal standards. Combustion analyses were performed with a Perkin-Elmer 2400 CHN instrument.

Synthesis

Literature procedures were used to prepare 1-amino-8-

$\dagger 1 \text{ cal} = 4.184 \text{ J}.$

Table 5 Torsion angles, ring puckering and deformation parameters and hydrogen interactions. C(1-13), C(4-13), C(8-13) and C(14-19) stand for the centroids of the corresponding phenyl rings (Å, °). For compounds 2: R1 = H, X1 = O(20), X2 = H; 4: R1 = H, X1 = C(16), X3 = C(27); 5: R1 = C(20), X1 = X3 = H and 7: R1 = C(20), X1 = O(21), X2 = C(22), see Fig. 1

			-			
		2	4	5	7	
N(1)-C(2)-C(14)-C(15)	Exp	178.2(3)	-101.3(2)	- 105.5(2)	- 64.7(2)	
	AMI	126.4	-90.1	-113.5	-70.6	
N(1)-C(2)-C(14)-C(19)	Exp	- 3.5(4)	77.8(2)	77.7(2)	120.0(2)	
	AMI	- 54.5	90.1	69.2	113.1	
C(2)-C(14)-C(15)-X1	Exp	- 2.9(4)		—	3.5(2)	
	AM1	-1.6	-0.8	—	5.4	
C(14)-C(15)-X1-X2	Exp		—	—	176.3(2)	
	AM1	10.7			-165.4	
q^2		0.018(3)	0.037(2)	0.023(2)	0.027(1)	
q^3		0.007(3)	-0.018(2)	-0.002(2)	0.013(1)	
φ^2		-157(8)	-173(2)	-177(4)	-20(3)	
θ^2		70(8)	101(2)	94(5)	64(2)	
XT		-0.3(2)	0.4(1)	0.0(1)	0.5(1)	
X4.12		-0.5(5)	-0.7(4)	1.3(4)	-0.9(3)	
X7.9		-0.5(5)	0.3(4)	1.1(4)	-0.2(3)	

	Interatom	ic distances			
$X - H \cdots Y$	X–H	X • • • Y	Н…Ү	X–H • • • Y	Symmetry
 (a) Compound I					
$O(20)-H(20)\cdots N(3)$ $N(1)-H(1)\cdots O(20)$	1.05(4) 0.93(4)	2.511(3) 3.100(4)	1.53(4) 2.24(4)	153(5) 153(2)	$ \begin{array}{l} x, y, z \\ x, \frac{1}{2} - y, \frac{1}{2} + z \end{array} $
(b) Compound II					
N(1)-H(1) · · · N(3) C(9)-H(9) · · · C(4-13) C(18)-H(18) · · · C(8-13)	0.92(2) 1.01(3) 1.02(4)	2.911(2) 3.901(2) 3.658(3)	2.00(2) 2.92(3) 2.78(4)	170(2) 164(2) 144(3)	$ \begin{array}{r} -\frac{1}{4} + y, \frac{3}{4} - x, -\frac{1}{4} + z \\ \frac{3}{4} - y, \frac{3}{4} + x, \frac{3}{4} - z \\ x, \frac{1}{2} + y, 1 - z \end{array} $
(c) Compound III					
$\begin{array}{c} C(6)-H(6)\cdots C(8-13)\\ C(11)-H(11)\cdots C(14-19)\\ C(18)-H(18)\cdots C(4-13) \end{array}$	0.98(3) 0.99(3) 1.01(3)	3.599(2) 3.759(2) 3.613(3)	2.86(3) 2.96(3) 2.78(3)	134(2) 138(2) 140(2)	$\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$ x, y, 1 + z 1 - x, -y, -z
(d) Compound IV					
$\begin{array}{c} C(20)-H(201)\cdots O(21)\\ C(18)-H(18)\cdots C(8-13)\\ C(19)-H(19)\cdots C(1-13)\\ C(20)-H(202)\cdots C(1-13)\\ C(22)-H(222)\cdots C(14-19) \end{array}$	0.96(3) 0.96(3) 0.97(2) 1.06(3) 0.98(3)	3.152(2) 3.792(2) 3.555(2) 3.546(2) 3.774(4)	2.49(2) 2.93(3) 2.98(2) 2.65(3) 3.07(3)	126(2) 151(2) 119(1) 142(2) 130(2)	$x, \frac{1}{2} - y, -\frac{1}{2} + z$ -x, -y, -z -x, -y, -z x, $\frac{1}{2} - y, -\frac{1}{2} + z$ x, $\frac{1}{2} - y, \frac{1}{2} + z$

 Table 6
 Crystal analysis parameters at room temperature

	2	4	5	7
Crystal data				
Formula	C ₁₇ H ₁₇ N ₂ O	$C_{25}H_{16}N_{2}$	C ₁₀ H ₁₄ N ₂	C10H16N2O
Crystal habit	Brown prism	Yellow prism	Green prism	Yellow prism
Crystal size/mm	$0.03 \times 0.13 \times 0.43$	$0.20 \times 0.20 \times 0.50$	$0.07 \times 0.20 \times 0.33$	$0.17 \times 0.33 \times 0.5$
Symmetry	$P2_1/c$	$I4_1/a$	$P2_1/n$	$P2_1/c$
Unit cell determination:		Least-squares fit from r	reflections with $\theta < 45^{\circ}$	-
	61 reflections	78 reflections	70 reflections	75 reflections
Unit cell dimensions/Å, °	13.1392(10)	20.8101(5)	17.6446(14)	11.4275(6)
	7.6778(3)	20.8101(5)	9.2154(4)	16.8070(13)
	13.4780(7)	16.8186(7)	8.3780(3)	7.9243(3)
	90, 116.447(4), 90	90, 90, 90	90, 102.862(5), 90	90, 99.830(4), 90
Packing: $V/Å^3$, Z	1217.4(1), 4	7883.5(4), 16	1328.1(1), 4	1499.6(2), 4
$D_{\rm c}/{\rm g}~{\rm cm}^{-3},~M,~F(000)$	1.420, 260.3, 544	1.256, 344.4, 2880	1.292, 258.3, 544	1.277, 288.4, 608
μ/cm^{-1}	6.78	5.37	5.59	5.96
Experimental data				
Technique	Four-circle diffractometer:	Philips PW1100, Bisecting	geometry	
1 · · ·	Graphite oriented monoch	romator: Cu-K α , $\omega/2\theta$ scans	s, Detector apertures $1 \times 1^{\circ}$.	$\theta_{\rm max} = 65^{\circ}, 1 {\rm min/reflex}$
Scan width:	1.4°	1.4°	1.4°	1.6°
Number of reflections:				
Independent	2054	3102	2262	2549
Observed $[3\sigma(I) \text{ crit.}]$	1353	2447 <i>ª</i>	1681 <i>°</i>	2211 "
Solution and refinement				
Solution	Sir88 + Dirdif92	Sir88	Sir88	Dirdif92
Refinement: L.S. on F_{0}	Full matrix	Full matrix	Full matrix	Full matrix
Parameters:				
Number of variables	229	308	237	263
Degrees of freedom	1124	2139	1444	1948
Ratio of freedom	5.9	7.9	7.1	8.4
Final (shift/error)	0.05	0.06	0.06	0.01
H atoms		From differen	nce synthesis	
Weighting-scheme	Empi	rical as to give no trends in <	$\langle \omega \Delta^2 F \rangle vs. \langle F_{obs} \rangle$ and $\langle \sin \theta \rangle$	θ/λ
Max. thermal value/Å ²	U22[C(10)] = 0.080(2)	U22[C(24)] = 0.158(3)	U11[C(20)] = 0.094(2)	$U_{33}[C(10)] = 0.109(2)$
Final ΔF peaks/e Å ⁻³	± 0.15	±0.12	±0.12	± 0.18
Final R and R_{w}	0.046, 0.050	0.044, 0.051	0.041, 0.049	0.048, 0.059

^a 8, 1 and 2 reflections [compounds 4, 5 and 7] were affected by secondary extinction and were considered as unobserved in the last cycles of refinement.

methylaminonaphthalene,^{4a} 2-phenylperimidine (1),^{3a} and 2-(2-methoxyphenyl)perimidine (3).⁹ Column chromatography was carried out using silica gel (240–300 mesh).

2-Arylperimidines. General procedure. Equivalent amounts of

1,8-diaminonaphthalene or 1-amino-8-methylaminonaphthalene (0.019 mol) and the appropriate aldehyde (0.019 mol) were refluxed for 4–8 h in 40 cm³ of xylene in the presence of 0.6 g, of 10% palladium-on-carbon catalyst. The hot reaction mixture

Fig. 5 Theoretical (AM1) energy profiles ¹⁷ of molecules 2, 4, 5 and 7

was filtered and the filtrate chilled to precipitate the product. Addition of diethyl ether was necessary in some cases to start precipitation.

2-(2-Hydroxyphenyl)perimidine (2).—Mp 243–246 °C from xylene (lit.,^{4b} 243–244 °C), 77% yield.

2-(9-Anthryl)perimidine (4).—Mp 254–255 °C from chloroform-hexane (1:1), 54% yield (Found: C, 87.0; H, 5.1; N, 8.4. $C_{25}H_{16}N_2$ requires C, 87.18; H, 4.78; N, 8.13%).

1-Methyl-2-phenylperimidine (5).—Mp 175–176 °C from chloroform (lit., 4c 173–174 °C), 70% yield.

l-Methyl-2-(2-hydroxyphenyl)perimidine (6).—Mp 243–245 °C from xylene, 35% yield (Found: C, 74.15; H, 5.2; N, 9.7. $C_{18}H_{14}N_2O \cdot H_2O$ requires: C, 73.95; H, 5.52; N, 9.58%).

1-Methyl-2-(2-methoxyphenyl)perimidine (7).—A mixture of 2-(2-hydroxyphenyl)perimidine (2) (1 g, 0.0038 mol), methyl iodide (0.48 cm³, 0.0076 mol), potassium hydroxide (0.43 g, 0.0076 mol) and anhydrous potassium carbonate (5.32 g, 0.038 mol) in 40 cm³ of acetone were heated for 4 h. The mixture was cooled and the solvent evaporated off. The crude reaction mixture was chromatographed with chloroform–ethyl acetate (9:1) and compound 7 was obtained in the fraction of R_f 0.42. Mp 144–146 °C from diethyl ether, 65% yield (Found: C, 78.8; H. 5.75; N, 9.6. C₁₉H₁₆N₂O requires C, 79.14; H, 5.59; N, 9.72%).

X-Ray structure determination of compounds 2, 4, 5 and 7. Crystal data and the main experimental conditions are reported in Table 6. X-Ray crystals of 2 were obtained from ethanol, 4 from chloroform–cyclohexane, 5 from chloroform and 7 from $[^{2}H_{6}]DMSO$. The structures were solved by direct methods¹⁸ or its application to the differences in structure factors.¹⁹ The non-hydrogen atoms were refined anisotropically and the hydrogen atoms, obtained from the difference Fourier synthesis, were included and refined as isotropic. The calculations were performed using the XRAY 80 System²⁰ on a VAX6410 computer.

The atomic scattering factors were taken from the *International Tables for X-Ray Crystallography*,²¹ and the weighting schemes were established using the PESOS program.^{1,22}

Acknowledgements

Financial support was provided by the *Dirección General de Investigación Ciéntífica y Técnica*, project numbers PB90-0226-C02, PB93-0197-C02 and PB93-0125.

[‡] Supplementary data [see section 5.6.3 of 'Instructions for Authors (1995)', January issue]. Lists of the thermal components, hydrogen parameters and bond distances and angles have been deposited at the Cambridge Crystallographic Data Centre.

References

- 1 G. Boyer, R. M. Claramunt, J. Elguero, M. Fathalla, C. Foces-Foces, C. Jaime and A. L. Llamas-Saiz, J. Chem. Soc., Perkin Trans. 2, 1993, 757.
- 2 J. Catalán, J. C. del Valle, R. M. Claramunt, M. D. Santa María, V. Bobosik, R. Mocelo and J. Elguero, J. Org. Chem., in the press.
 3 (a) V. Paragamian, M. B. Baker, M. B. Puma and J. Reale,
- 3 (a) V. Paragamian, M. B. Baker, M. B. Puma and J. Reale, J. Heterocycl. Chem., 1968, 5, 591; (b) A. Maquestiau, L. Berte, A. Mayence and J.-J. Vanden Eynde, Synth. Commun., 1991, 21, 2171.
- 4 (a) A. F. Pozharskii, A. N. Suslov, N. M. Starshikov, L. L. Popova, N. A. Klyuev and V. A. Adanin, *Zh. Org. Khim.*, 1980, 16, 2216;

- (b) A. F. Pozharskii, N. M. Starshikov, F. T. Pozharskii and Yu. I. Mandrykin, *Khim. Geterotsikl. Soedin.*, 1977, 7, 980; (c) A. K. Sheinkman, A. F. Pozharskii, V. I. Sokolov and T. V. Stupnikova, *Dokl. Akad. Nauk SSSR*, 1976, **226**, 1094.
- 5 W. R. Croassmun and R. M. K. Carlson, *Two-Dimensional NMR* Spectroscopy, 2nd edn., VCH, Weinheim, 1994.
- 6 H. Gunther, La Spectroscopie de RMN, Masson, Paris, 1994.
- 7 H. O. Kalinowski, S. Berger and S. Braun, *Carbon-13 NMR Spectroscopy*, Wiley, New York, 1988.
- 8 J. Catalán, F. Fabero, R. M. Claramunt, M. D. Santa María, C. Foces-Foces, F. Hernández-Cano, M. Martinez-Ripoll, J. Elguero and R. Sastre, J. Am. Chem. Soc., 1990, 114, 5039.
- 9 C. Foces-Foces, A. L. Llamas-Saiz, R. M. Claramunt, D. Sanz, J. Dotor and J. Elguero, J. Cryst. Spectrosc. Res., 1993, 23, 305.
- Botto and J. Engleto, J. Dotor, D. Sanz, C. Foces, Jos. A. L. Llamas-Saiz, J. Elguero, R. Flammang, J. P. Morizur, E. Chapon and J. Tortajada, *Helv. Chim. Acta*, 1994, 77, 121.
- 11 S. R. Hall and J. M. Štewart, XTAL3.0 Eds. Univs. of Western Australia and Maryland, Perth, 1990.
- 12 M. Nardelli, Comput. Chem., 1983, 7, 95.
- 13 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.
- 14 F. H. Cano, C. Foces-Foces and S. García-Blanco, J. Cryst. Mol. Struct., 1979, 9, 107.
- 15 J. J. P. Stewart, Frank J. Seiler Research Laboratory, United States Air Force Academy, CO 80840 USA, 1990.

- 16 A. Domenicano and P. Murray-Rust, Tetrahedron Lett., 1979, 2283.
- 17 C. Kelley and T. Williams, GNUPLOT, VMS version 3.0, 1991.
- 18 M. C. Burla, M. Camalli, G. Cascarano, G. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 1989, 22, 389.
- 19 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. García-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, *The Dirdif Program System*, Technical report of the Crystallography Laboratory, Univ. of Nijmegen, The Netherlands, 1992.
- 20 J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck and H. Flack, *The X-Ray System*, Technical report TR-446, Computer Science Center, Univ. of Maryland, 1976.
- 21 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham: (Present distributor Kluwer Acad. Publ., Dordrecht), 1974, vol. IV.
- 22 M. Martinez-Ripoll and F. H. Cano, PESOS unpublished program, 1975.

Paper 5/002551 Received 16th January 1995 Accepted 2nd March 1995